XIII CONVEGNO INSTM | 23-26 Gennaio 2022 | Sestriere

Optimized strategies for the recovery of critical raw materials from end-of-life SOFCs

Saffirio S.^{1,2}, Fiore S.^{1,2}; Santarelli M.¹, Fiorot S.³, Pylypko S.⁴, Smeacetto F.^{1,2}, Fiorilli S.^{1,2}

ISC Reco.

¹ Politecnico di Torino, Torino, Italy; ² National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy; ³ Environment Park S.p.A., Torino, Italy; ⁴ Elcogen AS, Tallinn, Estonia

Scientific context

SOFCs (Solid Oxide Fuel Cells) represent a **highly efficient, fuelflexible and environmentally friendly technology**, alternative to fossil fuels, that offers a long-term reliable energy supply in the transition towards decarbonization. However, along with some major unmet challenges, especially in terms of life-cycle costs, the full deployment of SOFCs is still hindered by the **lack of efficient, scalable and costeffective end-of-life (EoL) strategies** enabling the management and valorization of waste products derived from stacks operation and avoiding their landfill disposal.

Within this framework, the **BEST4Hy project**, supported by the EU's Horizon 2020 Research and Innovation Programme, aims at developing and validating **new recycling strategies for the recovery of critical raw materials** (Ni, YSZ, La and Co) from EoL SOFCs for re-use in cell manufacturing. At the end of the processes, materials will be validated in terms of **quality and performance** in remanufactured SOFCs and stacks, demonstrating the overall efficiency of recycling.

Cathode detachment

The detachment of LSC (Lanthanum Strontium Cobaltite) cathode from EoL cells has been carried out through manual **mechanical scratching**.

The recovered LSC powders are repeatedly milled and sieved below 20µm to target the specific acceptance criteria for direct re-using (**14% wt loss**).

In parallel, the development of specifically adapted processes is under study ^[1,2,3,4] to selectively recover La and Co in the form of precursors for both closed-loop and open-loop recycling.

Polishing of residues

LSC residues and GDC barrier layer are successfully removed, leading to a **high purity** of the recovered anode materials. According to EDS mapping, the thin 8YSZ electrolyte is concurrently polished away. The recovery process thus regards the main cell components, i.e. **Ni-3YSZ**.

EDS Elemental Analysis Before polishing After polishing

Objectives of the study

This study seeks to specifically adapt and optimize recycling processes for the **recovery of Ni and YSZ from EoL anode-supported SOFCs**. The recovered materials are required to target fixed acceptance criteria for cell remanufacturing, with special focus on particle size distribution, specific surface area and chemical purity.

	Atomic Conc. (%)	Element Symbol	Atomic Conc. (%)	Element Symbol
μm Ni K 10 μm ;	27.06	0	58.77	0
EoL cell – After polishing	ND	Се	10.47	Се
	ND	Gd	3.69	Gd
	ND	Sr	3.12	Sr
	17.36	Zr	14.30	Zr
	52.78	Ni	6.90	Ni
μm Νίκ 10 μm 2	1.51	Υ	2.16	Y

 Assessment of the energy consumptions and modelling of the fluido-dynamic and thermal aspects governing the HT process in

The hydrothermal treatment (**HT**) exploits the **tetragonal-to-monoclinic transformation of YSZ** occuring at high pressures in the temperature range between 200 and 240°C^[5], with the aim to induce the **disgregation** of YSZ powders while limiting the energy consumptions related to the milling step.

XXI

view of its scaling up to TRL5.

References

[1] Journal of Power Sources 211 (2012) 184-191
[2] Russian Journal of Applied Chemistry 87 (2014) 1817-1822
[3] Hydrometallurgy 193 (2020) 105317
[4] Processes 9 (2021) 1369
[5] J. Mater. Sci 42 (2007) 6056-6061
[6] J. Am. Ceram. Soc., 85 (2002) 1473–76

For the selective extraction of Ni, the operating parameters (HNO₃ 2.2M, 600 rpm, 80°C, 2h) of an existing procedure reported for the acid-assisted treatment of Ni-YSZ Cermet ^[6] have been adapted and optimized to extract Ni from the Ni-YSZ anode components of SOFCs, both in batch and reactor conditions.

Key Outcomes

Leaching: •Batch conditions – stirring

Reactor conditions – no stirring

roject has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking grant agreeemnt No. 101007216. This project is supported by the EU's Horizon 2020 Research and Innovation Programme, Hydrogen Europe and Hydrogen Europe Research.